The Origin Recognition Complex Functions in Sister-Chromatid Cohesion in Saccharomyces cerevisiae

نویسندگان

  • Kenji Shimada
  • Susan M. Gasser
چکیده

High-fidelity chromosomal segregation requires the properly timed establishment of sister-chromatid cohesion mediated by the Cohesin complex, and its resolution at the metaphase-to-anaphase transition. We have examined cell-cycle progression in a yeast strain from which the origin recognition complex protein Orc2 was depleted after the assembly of prereplication complexes. We find that Orc2 depletion causes a delay in progression through mitosis, reflecting activation of both the DNA-damage and Mad2-spindle checkpoints. Surprisingly, sister-chromatid cohesion is impaired in Orc2-depleted cells, although Cohesin subunits are properly associated with chromatin. Reexpression of Orc2 in late G2/M phase restores chromatid cohesion. Finally, the targeting of Orc2 to a specific chromosomal locus suppresses premature sister-chromatid separation locally in a temperature-sensitive cohesin mutant. We conclude that ORC mediates sister-chromatid interaction on a pathway that is additive with Cohesin-mediated pairing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The origin recognition complex links replication, sister chromatid cohesion and transcriptional silencing in Saccharomyces cerevisiae.

Mutations in genes encoding the origin recognition complex (ORC) of Saccharomyces cerevisiae affect initiation of DNA replication and transcriptional repression at the silent mating-type loci. To explore the function of ORC in more detail, a screen for genetic interactions was undertaken using large-scale synthetic lethal analysis. Combination of orc2-1 and orc5-1 alleles with the complete set ...

متن کامل

Saccharomyces cerevisiae DNA Polymerase ε and Polymerase Interact Physically and Functionally, Suggesting a Role for Polymerase ε in Sister Chromatid Cohesion

The large subunit of Saccharomyces cerevisiae DNA polymerase , Pol2, comprises two essential functions. The N terminus has essential DNA polymerase activity. The C terminus is also essential, but its function is unknown. We report here that the C-terminal domain of Pol2 interacts with polymerase (Pol ), a recently identified, essential nuclear nucleotidyl transferase encoded by two redundant ge...

متن کامل

E3 ubiquitin ligase Bre1 couples sister chromatid cohesion establishment to DNA replication in Saccharomyces cerevisiae

Bre1, a conserved E3 ubiquitin ligase in Saccharomyces cerevisiae, together with its interacting partner Lge1, are responsible for histone H2B monoubiquitination, which regulates transcription, DNA replication, and DNA damage response and repair, ensuring the structural integrity of the genome. Deletion of BRE1 or LGE1 also results in whole chromosome instability. We discovered a novel role for...

متن کامل

Cohesin plays a dual role in gene regulation and sister-chromatid cohesion during meiosis in Saccharomyces cerevisiae.

Sister-chromatid cohesion mediated by cohesin ensures proper chromosome segregation during cell division. Cohesin is also required for postreplicative DNA double-strand break repair and gene expression. The molecular mechanisms of these diverse cohesin functions remain to be elucidated. Here we report that the cohesin subunits Scc3 and Smc1 are both required for the production of the meiosis-sp...

متن کامل

Genetic evidence that the acetylation of the Smc3p subunit of cohesin modulates its ATP-bound state to promote cohesion establishment in Saccharomyces cerevisiae.

Sister chromatid cohesion refers to the process by which sister chromatids are tethered together until the metaphase-to-anaphase transition. The evolutionarily conserved cohesin complex mediates sister chromatid cohesion. Cohesin not only ensures proper chromosome segregation, but also promotes high-fidelity DNA repair and transcriptional regulation. Two subunits of cohesin (Smc1p, Smc3p) are m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2007